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Introduction

Topics

For an Independent study, we decided to take a much deeper look
into Linear Algebra. We have:

a Mathematica program to visualize and compute measures
for numerical evaluation for the Power Method!

created a scheme to generalize the Power Method to
rectangular matrices!

established and proved a conjecture for the characteristic
polynomials for symmetric matrices!
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Power Method

What is it?

The Power Method is:

A numeric method for finding eigenvalues

Very easy to program

Has many methods spawning from it (i.e. Inverse PM)

While playing around with this method, we discovered an
interesting property,

Geometrically, objects were being rotated toward the
eigenspace!



An Exploration of Iterative Matrix Transformations

Power Method

What is it?

The Power Method is:

A numeric method for finding eigenvalues

Very easy to program

Has many methods spawning from it (i.e. Inverse PM)

While playing around with this method, we discovered an
interesting property,

Geometrically, objects were being rotated toward the
eigenspace!



An Exploration of Iterative Matrix Transformations

Power Method

What is it?

The Power Method is:

A numeric method for finding eigenvalues

Very easy to program

Has many methods spawning from it (i.e. Inverse PM)

While playing around with this method, we discovered an
interesting property,

Geometrically, objects were being rotated toward the
eigenspace!



An Exploration of Iterative Matrix Transformations

Power Method

What is it?

The Power Method is:

A numeric method for finding eigenvalues

Very easy to program

Has many methods spawning from it (i.e. Inverse PM)

While playing around with this method, we discovered an
interesting property,

Geometrically, objects were being rotated toward the
eigenspace!



An Exploration of Iterative Matrix Transformations

Power Method

What is it?

The Power Method is:

A numeric method for finding eigenvalues

Very easy to program

Has many methods spawning from it (i.e. Inverse PM)

While playing around with this method, we discovered an
interesting property,

Geometrically, objects were being rotated toward the
eigenspace!



An Exploration of Iterative Matrix Transformations

Power Method

Using the Power Method

For the Power Method to work, we must have that:

The matrix A must be square.

The matrix A has a distinct absolute greatest eigenvalue.

Method:

x1 =Ax0

x2 =Ax1 = A2x0
...

xn =Axn−1 = Anx0

Rayleigh’s Quotient:

Ax = λx⇒ λ =
xTAx

xTx

Convergence: Given that the eigenvalues are
ordered and |λ2| < |λ1|, the convergence rate
S is:

S =
|λ2|
|λ1|
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Generalizing the Power Method

Rectangular Matrices

More commonly seen, rectangular matrices differ from square in
many ways

The number of columns and rows are not equal

They can change the dimension of the object’s ambient space

They don’t have eigenvalues

Instead, they have singular values, σ. Where σ is found to be the
square root of the eigenvalues of AAT.
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Generalizing the Power Method

Products of Transposes:

ATA vs. AAT

Used in Singular Value Decomposition

Connections to the Power Method:

We could use the PM on ATA to find the singular values

It didn’t seem to matter if we used ATA or AAT!

Applications

We can choose the smaller of ATA or AAT to perform
calculations!
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Generalizing the Power Method

The Rectangular Power Method

For the Rectangular Power Method to work, we must have that:

The matrix A has a distinct absolute greatest singular value

Method:

x1 = Ax0

x2 = ATx1 =ATAx0
...

x2n = ATx2n−1 =(ATA)nx0

x2n+1 = Ax2n =A(ATA)nx0

Rayleigh’s Quotient:

ATAx = σ2x⇒ σ =

√
xT(ATA)x

xTx

Convergence: Given that the singular
values are ordered and |σ2| < |σ1|, the
convergence rate S is:

S =

(
|σ2|
|σ1|

)2
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Our Theorem

Theorem (G, P. 2015)

Let A be an m×n matrix with m < n and rank(A)=k , then ATA
and AAT are symmetric matrices and their characteristic
polynomials are

(−1)nλn−k
(
λk + Cn−1λ

k−1 + ...+ Cn−(k−1)λ+ Cn−k

)
and

(−1)mλm−k
(
λk + Cn−1λ

k−1 + ...+ Cn−(k−1)λ+ Cn−k

)
respectively.

*A more general version of this was proven by J. Schmid (1970)



An Exploration of Iterative Matrix Transformations

Our Theorem

Our Theorem

Theorem (G, P. 2015)

Let A be an m×n matrix with m < n and rank(A)=k , then ATA
and AAT are symmetric matrices and their characteristic
polynomials are

(−1)nλn−k
(
λk + Cn−1λ

k−1 + ...+ Cn−(k−1)λ+ Cn−k

)
and

(−1)mλm−k
(
λk + Cn−1λ

k−1 + ...+ Cn−(k−1)λ+ Cn−k

)
respectively.

*A more general version of this was proven by J. Schmid (1970)



An Exploration of Iterative Matrix Transformations

Proof

Computing the Coefficients

For an n × n matrix A and 1 ≤ k ≤ n:

Paul Horst Method

Each coefficient Cn−k is equal to the sum of the kth order principal
minors of A.

Faddeev-Leverrier Algorithm

Construct a sequence of matrices {Mk} and calculate each
coefficient Cn−k by computing the trace of [AMk ].

M0 = 0 Cn = 1

Mk = AMk−1 + Cn−k+1In Cn−k = −1

k
Tr(AMk)
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Proof

Establishing Lemmas

Lemma 1:

If A, B are n × n matrices and c is a scalar, then

Tr(cA + B) = cTr(A) + Tr(B)

Lemma 2:

If C is an m × n matrix and D is an n ×m matrix,

Tr(CD) = Tr(DC )

Lemma 3:

If C is an m × n matrix and D is an n ×m matrix,

Tr
[
(CD)k

]
= Tr

[
(DC )k

]
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Proof

Overview of Proof

The Characteristic Polynomials

ATA :λn + Cn−1λ
n−1 + ...+ C1λ+ C0

AAT :λm + Dm−1λ
m−1 + ...+ D1λ+ D0

With Paul Horst’s method and the definitions of rank and
determinental rank, we conclude these polynomials have the
same number of terms.

ATA : (−1)nλn−k
(
λk + Cn−1λ

k−1 + ...+ Cn−(k−1)λ+ Cn−k

)
AAT : (−1)mλm−k

(
λk + Dm−1λ

k−1 + ...+ Dm−(k−1)λ+ Dm−k

)
Using the Fadeev-Leverrier algorithm and the lemmas, we can
establish that each remaining Cn−i = Dm−i , thus proving that
the two polynomials are identical sans a factor of λn−m.
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Future Work

What must be considered in the case where the matrix has no
distinct dominant eigenvalue

Similarly, for a rectangular matrix with no distinct dominant
singular value

Explore the combinatorial relation between the entries in the
product of transposes

Look further into the Faddeev-Leverrier Algorithm
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